Characterisation of nanomaterial hydrophobicity using engineered surfaces
نویسندگان
چکیده
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors. Graphical abstractDetermination of hydrophobicity character of nanomaterials by measuring their affinity to engineered surfaces.
منابع مشابه
Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies
Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazard...
متن کاملThe Relationship between Cell Surface Hydrophobicity and Antibiotic Resistance of Streptococcal Strains Isolated from Dental Plaque and Caries
Objective Bacterial adhesion is governed by specific and nonspecific interactions such as hydrophobicity. Hydrophobic interactions play a role in the adherence of microorganisms to a wide variety of surfaces and facilitate biofilm formation due to bacterial adhesion. In this article the relation between cell surface hydrophobicity and antibiotic resistance was studied. Materials and Methods ...
متن کاملEnzyme Immobilisation on Amino-Functionalised Multi-Walled Carbon Nanotubes: Structural and Biocatalytic Characterisation
BACKGROUND The aim of this work is to investigate the structure and function of enzymes immobilised on nanomaterials. This work will allow better understanding of enzyme-nanomaterial interactions, as well as designing functional protein-nanomaterial conjugates. METHODOLOGY/PRINCIPAL FINDINGS Multiwalled carbon nanotubes (MWNTs) were functionalised with amino groups to improve solubility and b...
متن کاملHydrophobicity effect on oil degradation by two marine bacterial strains Alcanivorax borkumensis and Thalassolituus oleivorans
Variations on hydrophobicity were monitored in two marine obligate hydrocarbonoclastic bacteria: Alcanivorax borkumensis SK2T and Thalassolituus oleivoras MIL-1T. These strains were inoculated, separately in ONR7a mineral medium with different concentration of sodium acetate. During 10 days measurements of cellular abundance and cellular hydrophobicity (capacity to adhere at polystyrene) were c...
متن کاملEffects of Bacillus anthracis hydrophobicity and induction of host cell death on sample collection from environmental surfaces.
The objective of this study is to determine whether DNA signature recovery of Bacillus anthracis strains from different environmental substrates correlates with pathogen cell surface hydrophobicity and induction of host cell death. We compared recovery of DNA signatures from a panel of B. anthracis strains collected from two environmental substrates, non-porous surfaces and soil, using real-tim...
متن کامل